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Stabilizing effect of periodic or eventually periodic constant pulses on chaotic dynamics
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Centre de Bioinformatique, Inserm U444, Courrier 7113, Universite´ Paris 7-Denis Diderot, 2 Place Jussieu,

75251 Paris Cedex 05, France
~Received 15 January 1998!

It is shown that periodic or eventually periodic constant pulses applied to a chaotic dynamic may stabilize
the system’s trajectory at a periodic orbit. Methods to find all points where stabilization is possible and to
calculate the corresponding constant pulses are given. Both discrete and continuous dynamics are considered.
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In the last decades, several methods have been prop
to control chaotic dynamics, i.e., to stabilize the dynamics
a fixed level or at a periodic orbit. In their pioneering wor
Ott, Grebogi, and York@1# showed that very small change
of a parameter, when appropriately performed, can ef
tively control a chaotic dynamic. The other methods to m
ter chaos published since that time used proportional fe
back, delay feedback@2,3#, small periodic perturbations of
parameter@4#, or regular pulses on a variable@5,6#. Interac-
tion of a dynamic with one of its subsystems may synch
nize chaotic dynamics@7#. Methods to control chaos hav
been applied to laboratory physics@8–11#, chemistry@12#,
and experimental cardiology@13#. Good surveys of the topic
are @14,15#. A book was published on the control of chao
including reprints of 20 selected papers@16#.

In a recent paper@17# we have examined the effects o
periodic proportional pulses,Xi→kXi , performed on the tra-
jectory,Xi , of a chaotic dynamic. This maneuver, sugges
by Güémez and Matias@5,6#, may stabilize the trajectory at
fixed point, or more generally, at a periodic orbit. W
showed@17# for a given periodp where stabilization is pos
sible and, when this is possible, how to calculate the co
sponding pulsek.

In the spirit of Matias and Gu¨émez’s method, we studied
in the present work, the possibility to stabilize chaos by s
tracting constant amountsK from ~or adding constan
amountsK to! the variables of the dynamic, in a period
manner. These interventions will be called ‘‘periodic co
stant pulses.’’ Both discrete and continuous dynamics
considered. Given an arbitrary integerp, we found all the
points M in the phase space where constant pulses can
bilize the orbit at a periodic orbit of periodp crossingM and
showed how to calculate the corresponding constantK. The
presentation of this paper is very similar to the previous o
@17#.

Consider first ad-dimensional discrete dynamic

X~n11!5F„X~n!…, ~1!

whereX5(x1 ,x2 , . . . ,xd), andF is a map of a domainD of
Rd into itself. To perform the control, we subtract consta
amountsK5(k1 ,k2 , . . . ,kd) from X, once everyp itera-
tions. The constantsk1 ,k2 , . . . ,kd may be positive, nega
tive, or zero, but we must be careful that the control will n
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move the orbit out of the domain of definition ofF. There-
fore the equation for the control is

X~ i !→X~ i !2K ~2!

if X( i )2KPD and if i is a multiple ofp.
In the case of a continuous dynamic

X8~ t !5F„X~ t !… ~3!

we assume that a Poincare´ section which can be modeled i
the form of Eq.~1!, wheren counts the returns of the orbit t
the section, is available, and perform the pulses on
Poincar’e section once everyp returns of the orbit to the
section. At the beginning, the control is not periodic in tim
but when the dynamic is stabilized at a periodic orbit, th
the control becomes periodic in time. Details to calculate
control vectorK corresponding to a given periodp will be
given below.

It is easy to show why periodic constant pulses may s
bilize a discrete chaotic dynamic. Consider, for example,
logistic map x(n11)5 f „x(n)…5ax(n)@12x(n)#, with a
53.9. We recall that a fixed pointxs of a map f is locally
stable if the derivativef 8(xs) is smaller than 1 in absolute
value. Let us pulse the dynamic withp52 andk50.1. Fig-
ures 1~a! and 1~b! show the mapsf (2)(x) and f (2)(x)2k.
The map f (2)(x) has no stable fixed point while the ma
f (2)(x)2k has a stable fixed point@see pointA in Fig. 1~b!#.
Figures 1~c! and 1~d! show an orbit of the systemx(n11)
5 f (2)

„x(n)… and an orbit of the systemx(n11)
5 f (2)

„x(n)…2k. So, the idea is very simple: we have ju
to localize the pointsxs where u f (2)8(xs)u,1 and drive
the curve f (2)(x) by f (2)(x)→ f (2)(x)2k so that the curve
f (2)(x)2k meets the diagonal atxs . This gives the constan
k.

For continuous dynamic having a Poincare´ section that
can be modeled, the control can be performed in the sec
as indicated above. We will give an example below.

Consider the discrete dynamic defined by Eq.~1!, and let
us perform the control as indicated by Eq.~2!. Define

G~X!5F ~p!~X!2K ~4!

andF (p) is thep-times composition of the mapF with itself.
A fixed point of G is any solutionXs of the equation
7317 © 1998 The American Physical Society
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G~Xs!5Xs ~5!

and this solution is locally stable if the Jacobian ofG at Xs
has all eigenvalues with modulus smaller than 1. Clearly,
Jacobian matrix ofG is also the Jacobian matrix ofF (p).

To stabilize the orbit at a periodp, it is sufficient to find
the pointsXs such that the Jacobian ofF (p) at Xs has all
eigenvalues of modulus smaller than 1. Once theXs have
been identified, Eq.~5! gives the corresponding control ve
tor K.

To give an example, consider the well-known He´non map
x(n11)5a2x(n)21by(n), y(n11)5x(n), with a51.4
andb51/3. Figure 2 shows the points (xs ,ys) in the square
D5@22,2#3@22,2# corresponding top51, 2, 3, and 4. To
obtain Fig. 2, we have used a grid of 1003100 points in the
squareD, and, at each point, calculated the eigenvalues
F (p) (p51, 2, 3, and 4! where F is the Hénon map. We
plotted the point (xs ,ys) if the corresponding eigenvalue

FIG. 1. ~a! and~b! Maps f (2)(x) and f (2)(x)20.1, respectively,
where f (x)53.9x(12x). Point A in ~b! is a fixed point off (2)(x)
20.1; ~c! and ~d! recurrent seriesx(n)5 f (2)

„x(n21)… and x(n)
5 f (2)

„x(n21)…20.1, respectively.

FIG. 2. Points (xs ,ys) where one can stabilize the He´non map at
periods 1, 2, 3, and 4, by the constant pulses method.
e

f

have moduli lower than 1. TheK5(k1 ,k2) values corre-
sponding to the points in Fig. 2, calculated by Eq.~5!, are
shown in Fig. 3.

Figures 2 and 3 show that, to stabilize the dynamic a
given period, we have some possibilities of choice. For
ample, for periods 1–4, one may stabilize the dynamic w
k250, with an appropriate choice ofk1.

The controlled orbit is not an orbit of the original ma
unlessK50. Figure 3 shows that, forp51 and 3, the point
K5(0,0) is not in the neighborhood of the plotted regio
while this is the case forp52 and 4. Therefore, with smal
values ofK, our method can stabilize the He´non orbit at
periods 2 and 4 but not at periods 1 and 3. With smallK
values, the controlled orbit and the uncontrolled orbit a
almost the same, the controlled orbit is locally stable wh
the uncontrolled orbit is unstable. Figure 4 shows two e
amples ofx(n): a series controlled to period 2 and a ser
controlled to period 4. When we performed the control~see

FIG. 3. Values of pulsesK5(k1 ,k2) to stabilize the He´non map
at periods 1, 2, 3, and 4.

FIG. 4. Seriesx(n) of the Hénon map, stabilized at periods
and 4 by small constant pulses. Under control~see the circle
points!, the series was quickly set to the desired periods. W
control was dropped~see the starred points!, the orbits remained a
almost the same periodic orbit, but only for one more period, th
became chaotic.
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the circle points in Fig. 4!, the orbit was stabilized to the
desired period. When we dropped the control~see the starred
points in Fig. 4!, the trajectory remained almost at the sam
periodic orbit, but for just one more period, then beca
chaotic.

For continuous dynamics having a Poincare´ section, it is
sufficient to control the trajectory when it crosses the Po
carésection.

To give an example, let us consider the chaotic Ros
dynamic

x8~ t !52y~ t !2z~ t !,

y8~ t !5x~ t !10.2y~ t !, ~6!

z8~ t !50.21z~ t !@x~ t !25.7#.

It is well known that this system has a good Poinca´
section, defined by the points where the orbit cuts the P
caréplaney1z50, from the sidey1z,0 to the sidey1z
.0, i.e., the points wherex(t) has a local maximal. We cal
these points the return points to the section. L
„x( i ),y( i ),z( i )… be the successive return points. A portion
the Rössler trajectory is shown in Fig. 5~top!, where the
Poincare´ section is the line transversal to the trajectory. F
ure 5 shows also the depiction ofx( i 11) versusx( i ). This
represents a quite smooth curve. We modeled the curve
the equationx(n11)5 f „x(n)…, where f is a polynomial of
degree 6. The polynomial was also drawn in Fig. 5, but
curve fitting was so good that one cannot distinguish

FIG. 5. Top: A Rössler orbit, with the Poincare´ section corre-
sponding to local maxima of thex component. The section wa
shown in the recurrent formx(n)5 f „x(n21)…. Recurrent maps
f (p) for p52, 3, 4, and 6.
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polynomial curve and the original points. Figure 5~lower
parts! shows the mapsf (p) with p52, 3, 4, and 6. Forp
52 and 4, the graph off (p) cuts the diagonal with very stee
slopes, while forp53 andp56, the largest intersection o
f (p) with the diagonal is very close to a local maximum
Therefore, forp53 andp56 ~but not forp52 and 4!, we
can, by a small pulse, obtain a curvef (p)2k which cuts the
diagonal at a point with small derivative. We have shown
casep56, but not the casep55, because forp55, one
cannot stabilize the orbit with small values ofk.

Consider only ‘‘low’’ periods, say,p51 to 6 ~for the
moment, the period was counted as the number of the orb
returns to the Poincare´ section!. To stabilize the dynamic, we
may proceed as follows. When the orbit returns to a po
(xs ,ys ,zs) in the Poincare´ section, we examine the recurre
map~Fig. 5! to see whetheru f (p)(xs)u,1 for p51 to 6. If it
is so for a givenp, we calculate the corresponding constank
by Eq.~2!. At everypth subsequent return of the orbit to th
Poincare´ section, we perform the pulse with the constantk.
Figure 6 shows the stabilized orbits, withp52, 3, 4, and 6.
We showed two examples where thek values are small (p
53 and p56) and two examples where thek values are
large (p52 andp54). These results were obtained by i
specting Fig. 5.

Notice the orbit issued from any point will reach the Poi
carésection at a certain time. Therefore the present met
examines the possibility to stabilize the orbit through a
point in the phase space where the map is defined.

To conclude, this study investigates the possibility to s
bilize a chaotic trajectory by applying periodic consta
pulses to the orbit. The interest of the method is its simp
ity. Comparing to several other methods to control chaos,
present maneuver is probably the simplest one.

There is a large possibility to control chaotic dynamic
a constant periodic pulse. If one wishes to maintain the or
nal dynamic but stabilize it to a periodic orbit, one ma
choose the smallestK value. In the case of a chaotic popu
lation dynamic, where constant pulse represents the actio
‘‘harvesting,’’ one may wish to stabilize the dynamic at
periodic ~and hence predictable! trajectory, with the most
beneficial harvest. In that case, one may control with
largestK values.

FIG. 6. Examples of Ro¨ssler’s orbits controlled to periods 2, 3
4, and 6, using the constant pulses procedure.
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Our examples suggest that periodic constant pulses
plied to a chaotic dynamic have a potential ability to stabil
the orbit. It is conceivable that, without any knowledge
the dynamic and without any measurement, by just blin
performing regular constant pulses, one may stabilize a c
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f
y
a-

otic dynamic. The stabilizing effect of constant pulses
chaotic dynamics might be of interest in practical proble
where the dynamic equations are unknown. It may help
understand the connection between periodic and chaotic
nomena in nature.
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