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Stabilizing effect of periodic or eventually periodic constant pulses on chaotic dynamics
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It is shown that periodic or eventually periodic constant pulses applied to a chaotic dynamic may stabilize
the system’s trajectory at a periodic orbit. Methods to find all points where stabilization is possible and to
calculate the corresponding constant pulses are given. Both discrete and continuous dynamics are considered.
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In the last decades, several methods have been proposetve the orbit out of the domain of definition Bf There-
to control chaotic dynamics, i.e., to stabilize the dynamics afore the equation for the control is
a fixed level or at a periodic orbit. In their pioneering work,
Ott, Grebogi, and York1] showed that very small changes X(i)—X(i)—K 2)
of a parameter, when appropriately performed, can effec-
tively control a chaotic dynamic. The other methods to masif X(i)—KeD and ifi is a multiple ofp.
ter chaos published since that time used proportional feed- In the case of a continuous dynamic
back, delay feedbadk,3], small periodic perturbations of a
parametef4], or regular pulses on a variabllg,6]. Interac- X' (t)=F(X(1)) €)
tion of a dynamic with one of its subsystems may synchro- o _ _ )
nize chaotic dynamic§7]. Methods to control chaos have W€ assume that a Poincasection which can be modeled in
been applied to laboratory physif8—11], chemistry[12], the form of Eq.(1), wheren counts the returns of the orbit to
and experimental cardiolodyL3]. Good surveys of the topic the section, is available, and perform the pulses on the
are[14,15. A book was published on the control of chaos, Poincar’e section once everny returns of the orbit to the
including reprints of 20 selected papéis). section. At the beginning, the control is not periodic in time,

In a recent papef17] we have examined the effects of but when the dynamic is stabilized at a periodic orbit, then
periodic proportional pulseX;—kX;, performed on the tra- the control becomes periodic in time. Details to calculate the
jectory,X;, of a chaotic dynamic. This maneuver, suggestedcontrol vectorK corresponding to a given periqa will be
by Giemez and Matia$5,6], may stabilize the trajectory at a given below.
fixed point, or more generally, at a periodic orbit. We Itis easy to show why periodic constant pulses may sta-
showed[17] for a given periodp where stabilization is pos- bilige_a discrete chaotic dynamic. Consider, for exa_mple, the
sible and, when this is possible, how to calculate the correlogistic map x(n+1)=f(x(n))=ax(n)[1-x(n)], with a
sponding pulseé. =3.9. We recall that a fixed poin¢; of a mapf is locally

In the spirit of Matias and Gamez’s method, we studied, stable if the derivative’'(xs) is smaller than 1 in absolute
in the present work, the possibility to stabilize chaos by subvalue. Let us pulse the dynamic wifh=2 andk=0.1. Fig-
tracting constant amount& from (or adding constant ures 1a) and Xb) show the maps®)(x) and f)(x) k.
amountsK to) the variables of the dynamic, in a periodic The mapf(®)(x) has no stable fixed point while the map
manner. These interventions will be called “periodic con-f(®(x)—k has a stable fixed poifisee pointA in Fig. 1(b)].
stant pulses.” Both discrete and continuous dynamics ar&igures 1c) and Xd) show an orbit of the system(n+1)
considered. Given an arbitrary integer we found all the =f®(x(n)) and an orbit of the systemx(n+1)
pointsM in the phase space where constant pulses can sta=f(®(x(n))—k. So, the idea is very simple: we have just
bilize the orbit at a periodic orbit of perigal crossingM and  to localize the pointsxs where |f()"(x)|<1 and drive
showed how to calculate the corresponding congtarithe  the curvef(®)(x) by f()(x)—f)(x) —k so that the curve
presentation of this paper is very similar to the previous ong(?)(x) —k meets the diagonal a. This gives the constant

[17]. k.
Consider first ad-dimensional discrete dynamic For continuous dynamic having a Poincaection that
can be modeled, the control can be performed in the section
X(n+1)=F(X(n)), (1) as indicated above. We will give an example below.

Consider the discrete dynamic defined by Eq, and let
us perform the control as indicated by E8). Define

whereX=(xy,Xs, ... Xq), andF is a map of a domaib® of
RY into itself. To perform the control, we subtract constant G(X)=FP(X)—K 4
amountskK=(kq,k,, ... kg) from X, once everyp itera-
tions. The constantk, ks, ... ky may be positive, nega- andF(P is thep-times composition of the map with itself.

tive, or zero, but we must be careful that the control will notA fixed point of G is any solutionX of the equation
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FIG. 1. (a) and(b) Mapsf@(x) andf(®(x)—0.1, respectively,
wheref(x)=3.9%(1—x). PointA in (b) is a fixed point off (?(x)
—0.1; (c) and (d) recurrent seriex(n)=f®@(x(n—1)) and x(n)
=f@(x(n—1))—0.1, respectively.
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and this solution is locally stable if the Jacobian®fat X,
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FIG. 3. Values of pulsek = (k, ,k,) to stabilize the Haon map
at periods 1, 2, 3, and 4.

have moduli lower than 1. Th&=(k;,k,) values corre-
sponding to the points in Fig. 2, calculated by E§), are
shown in Fig. 3.

Figures 2 and 3 show that, to stabilize the dynamic at a
given period, we have some possibilities of choice. For ex-

has all eigenvalues with modulus smaller than 1. Clearly, th@mple, for periods 1-4, one may stabilize the dynamic with

Jacobian matrix of5 is also the Jacobian matrix 6%P).

To stabilize the orbit at a periog, it is sufficient to find
the pointsXs such that the Jacobian &) at X, has all
eigenvalues of modulus smaller than 1. Once Xaehave
been identified, Eq(5) gives the corresponding control vec-
tor K.

To give an example, consider the well-knownride map
x(n+1)=a—x(n)?+by(n), y(n+1)=x(n), with a=1.4
andb=1/3. Figure 2 shows the pointg{,y.) in the square
D=[-2,2]X[—2,2] corresponding tp=1, 2, 3, and 4. To
obtain Fig. 2, we have used a grid of 20000 points in the

k,=0, with an appropriate choice &f.

The controlled orbit is not an orbit of the original map,
unlessk =0. Figure 3 shows that, fgg=1 and 3, the point
K=(0,0) is not in the neighborhood of the plotted region,
while this is the case fop=2 and 4. Therefore, with small
values ofK, our method can stabilize the Hen orbit at
periods 2 and 4 but not at periods 1 and 3. With snxall
values, the controlled orbit and the uncontrolled orbit are
almost the same, the controlled orbit is locally stable while
the uncontrolled orbit is unstable. Figure 4 shows two ex-
amples ofx(n): a series controlled to period 2 and a series

squareD, and, at each point, calculated the eigenvalues ofontrolled to period 4. When we performed the contsse

F(P (p=1, 2, 3, and # whereF is the Hmon map. We
plotted the point Xs,ys) if the corresponding eigenvalues
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FIG. 2. Points & ,Ys) Where one can stabilize the hien map at
periods 1, 2, 3, and 4, by the constant pulses method.
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FIG. 4. Seriex(n) of the Heon map, stabilized at periods 2
and 4 by small constant pulses. Under contfe¢e the circle
pointg, the series was quickly set to the desired periods. When
control was droppegsee the starred poinighe orbits remained at
almost the same periodic orbit, but only for one more period, then
became chaotic.
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FIG. 5. Top: A Rasler orbit, with the Poincarsection corre-
sponding to local maxima of the component. The section was
shown in the recurrent formx(n)=f(x(n—1)). Recurrent maps
(P for p=2, 3, 4, and 6.

the circle points in Fig. ¥ the orbit was stabilized to the
desired period. When we dropped the confegle the starred
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FIG. 6. Examples of Resler’s orbits controlled to periods 2, 3,
4, and 6, using the constant pulses procedure.

polynomial curve and the original points. Figure(lbwer
party shows the map$® with p=2, 3, 4, and 6. Fop
=2 and 4, the graph dftP’ cuts the diagonal with very steep
slopes, while fop=3 andp=6, the largest intersection of
(P with the diagonal is very close to a local maximum.
Therefore, forp=3 andp=6 (but not forp=2 and 4, we
can, by a small pulse, obtain a curf® —k which cuts the
diagonal at a point with small derivative. We have shown the
casep=6, but not the cas@=5, because fop=5, one
cannot stabilize the orbit with small values laf

Consider only “low” periods, sayp=1 to 6 (for the
moment, the period was counted as the number of the orbit’s
returns to the Poincasection. To stabilize the dynamic, we
may proceed as follows. When the orbit returns to a point
(Xs,Ys,Zg) in the Poincaresection, we examine the recurrent

points in Fig. 4, the trajectory remained almost at the SaMEmap (Fig. 5) to see whethelf(P(x.)|<1 for p=1 to 6. If it
periodic orbit, but for just one more period, then becameg gq for 4 giverp, we calculate the corresponding constant

chaotic.
For continuous dynamics having a Poincaggtion, it is

sufficient to control the trajectory when it crosses the Poin

caresection.

To give an example, let us consider the chaotic Rossler

dynamic
X' (H)=—y(t)—z(1),
y' () =x(t)+0.2y(t),
Z'(t)=0.2+z(t)[ x(t)—5.7].

(6)

by Eq.(2). At everypth subsequent return of the orbit to the
Poincaresection, we perform the pulse with the constant

TFigure 6 shows the stabilized orbits, with=2, 3, 4, and 6.

We showed two examples where tkesalues are smallg
=3 andp=6) and two examples where thevalues are
large (p=2 andp=4). These results were obtained by in-
specting Fig. 5.

Notice the orbit issued from any point will reach the Poin-
caresection at a certain time. Therefore the present method
examines the possibility to stabilize the orbit through any
point in the phase space where the map is defined.

To conclude, this study investigates the possibility to sta-

It is well known that this system has a good Poincarebilize a chaotic trajectory by applying periodic constant
section, defined by the points where the orbit cuts the Poinpulses to the orbit. The interest of the method is its simplic-

careplaney+z=0, from the sidey+z<0 to the sidey+z
>0, i.e., the points wherg(t) has a local maximal. We call
these points the return points to the section.

Let

ity. Comparing to several other methods to control chaos, the
present maneuver is probably the simplest one.
There is a large possibility to control chaotic dynamic by

(x(i),y(i),z(i)) be the successive return points. A portion of a constant periodic pulse. If one wishes to maintain the origi-

the Rasler trajectory is shown in Fig. Bop), where the

nal dynamic but stabilize it to a periodic orbit, one may

Poincaresection is the line transversal to the trajectory. Fig-choose the smalles$t value. In the case of a chaotic popu-

ure 5 shows also the depiction »fi + 1) versusx(i). This

lation dynamic, where constant pulse represents the action of

represents a quite smooth curve. We modeled the curve Btharvesting,” one may wish to stabilize the dynamic at a

the equatiorx(n+1)=f(x(n)), wheref is a polynomial of

periodic (and hence predictabldrajectory, with the most

degree 6. The polynomial was also drawn in Fig. 5, but thebeneficial harvest. In that case, one may control with the
curve fitting was so good that one cannot distinguish thdargestK values.
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Our examples suggest that periodic constant pulses aptic dynamic. The stabilizing effect of constant pulses on
plied to a chaotic dynamic have a potential ability to stabilizechaotic dynamics might be of interest in practical problems
the orbit. It is conceivable that, without any knowledge ofwhere the dynamic equations are unknown. It may help to
the dynamic and without any measurement, by just blindlyunderstand the connection between periodic and chaotic phe-
performing regular constant pulses, one may stabilize a chaxomena in nature.
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